ChE-304 Problem Set 3

Week 3

Problem 1
A change in entropy for an ideal gas system undergoing a change in entropy where both,
T, V and P can be calculated with:

AS = (Cl (TZ) R1 (PZ))
=N D n Tl n Pl
AS = (Cl (T2)+Rl (VZ))
=n|Cyln T, n 7

Prove that these expressions hold for a single change where both T, V and P are changing

starting from the definition of AS: AS = f@

or

Solution

S is a state function. Therefore, AS only depends on the initial and final state not on the
path taken. Therefore, even if T, P and V are changing at once, we can choose a virtual
path for which it is easier to calculate AS:

Constant P path

Constant T path to P,
toT,

Real path

Constant V path Constant T path to V,

toT,

Let’s start with the constant P path:

AS = j dQrev

T

dU = dQye, + AW,, = nCydT (for an ideal gas)



dW,., = —PdV We add a negative sign because for a positive dV, the system “loses”
work

AWy, = —P;dV = —P;d (nI:T) = —nRdT (the last step is only “allowed” at cst P)

dQ,ep = AU — dW,,, = nC,dT + nRAT = nCpdT

_ erev _ nCPdT (TZ)
AS—j T —f T =nCpln T,

Note that because we are at constant P, we can also write: AS = nCp In (%)

1

Now, we do a constant T change:

nRT
au = nCVdT =0- erev = _dVVrev = pdV = Tdv

Again, above we have: dW, ., = —PdV

B dQyrer B PdV pd(Tz/P) PdP (Pz)
AS—j T —f f nRJ-—PZ——annP1

: — 2) _ P
Therefore: AS;,; = nCp In (Tl) nR In (Pl)
Now, let’s take the other path (constant V first):
dQrey = dU — dW,,, = nCydT + PdV = nC,dT

_ [ dQrev [ nCydT (Tz)
AS—] T —f T =nCy In T,

The second step is the same as before (Cst T):

nRT
dQrey = =AWy, = PdV = Tdv

dQrev fpdV szdV (Vz)
S j T T )y, TNy,

Therefore, we find the alternate expression:

T, V,
ASior = nCyln <T1) +nRIn (V1)



Problem 2

A community (average T=27°C) has an enormous underground reservoir of high-pressure
(inert) gas. The reservoir has the following properties:

T=237°C

P =9.95 atm

V=10% m?

Depth = 2000 m below the surface
Cp = 36 J/(mol K)

Mw= 0.03 kg/mol

Assume that the gas is ideal.

What is the maximum amount of work that the community could extract out of the gas?

Solution:

For a batch system:
Wex150 = — (Uo - (U +E, + Ek)l) + To(So — S1) — po (Vo — V1)

We can ignore Ej but not E;,! And we know what AU is for an ideal gas:
WEX,1—>0 =AU + Ep + ToAS - pO(VO - Vl) = TlCVAT + Ep + ToAS - pO(VO - Vl)

For an ideal gas: C, = Cp, — R =36 — 8.314 = 27.69 ] /(mol K)

AS for an ideal gas when both T and P are changing:
a5y () 03
=n p n T1 n P1
06

PV 1
= = — = _—m = 6
m=nMw RT Mw = 9.95 x 101325 8314 510 0.03 =7.1310%g

_7.1310°
"~ 0.03

AS

(361n (%) —RlIn (ﬁ)) = —1.4210%/K

E, = mgAz = 7.1310° x 9.8 (—2000) = —1.40 10'*J

7.13 10°
0.03

AU = nC,AT = 27.69 *210 = 1.3810%%]



105)

9.95 300
K

Wix1s0 = 1.38 1012 ] — 1.40 101 J — 300K * 1.42°22 — 101325 (106 ¥ 225300

10°) = 7.531 ]



Problem 3

When you heat your house with fuel oil (“mazout”) you produce gases in a continuous
process in the burner that are around 1400 °C (1673 K). These gases are ultimately
cooled to around 100°C in order to heat a home at a temperature that is generally constant
at around 20°C (and no work is produced in the process). This is not efficient because a
tremendous amount of work/exergy is wasted by not exploiting this temperature
difference. Can you calculate the maximum amount of work that is lost as a fraction of
the heat used to heat the house?

The gases can be considered ideal and they are always at a pressure of 1 atm (101°325
Pa).

The Cp can be assumed to be independent of temperature and equal to:

Cp= 30 J/(mol K) (assumed to be constant with T°)

Solution:

We calculate the exergy of the gas going from 1400°C to 100°C
Wex-2 = —(Hy — Hy) + To (S — S1)

With a constant Cp:

AH = CpAT = —30 %1300 = —39'000

For a constant P path:
dQrey = dU — dW,.p, = nCydT + nRAT = nCpdT

d nCpdT T.
AS=j szf i =an%i)

T T T,
30 %1 (373) 45 /K
— * [—
"\1673 J/

Wex 152 = 39000 — 293 * 45 = 25'815]

Wiost = Wex,1—>2 4

produced — Wex,1—>2 = 258151

Fraction of work lost for the heat produced: % =66%



Problem 4
Can you plot the efficiencies of the Otto, Diesel and Brayton cycles as a function of
compression ratios? For the Diesel cycle, also consider different expansion ratios. Based
on this can you rate the different engines if they were to use the same compression ratio?
Solution :
We use the following formulas for efficiencies for each of the cycles examined:
Otto’s cycle efficiency:

n=1-r}"*
Diesel cycle efficiency:

B -G

n=1-G 11
T' T'

k

where re is the expansion ratio of the Diesel engine.

Efficiency of the Bryton cycle is given by equation (1.64) from the notes:
k-1
P\ Kk
=1-—(-=2
1 (PB)

With 22 = 1. it becomes
Pa



On the figure bellow we have plotted efficiencies of different engines while varying the

compression ratio.
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The Otto’s cycle is theoretically the most efficient cycle for all the compression ratios
examined (6-25). However, we cannot compress gasoline above rc~9 (with very high-
octane fuel) due to its self-ignition. Therefore, the other two cycles (Brayton and Diesel)
can effectively reach higher efficiencies. In addition, Diesel engines feature one more
variable with is the expansion ratio (re). The more we are able to expand, the higher the
efficiencies will be. Further, we notice that the Brayton’s cycle efficiency varies the most
with compression ratios. With lower compression ratios (<10) it is by far the least efficient
solution, whereas when reaching high compression (>20) it becomes comparable or
superior to Diesel engine efficiency (depending on how much we expand in the Diesel

cycle).



