
ChE-304 Problem Set 3 
Week 3 

 

 

Problem 1 

A change in entropy for an ideal gas system undergoing a change in entropy where both, 

T, V and P can be calculated with: 

 

∆𝑆 = 𝑛 (𝐶𝑝 ln (
𝑇2

𝑇1
) − 𝑅 ln (

𝑃2

𝑃1
)) 

or 

 

∆𝑆 = 𝑛 (𝐶𝑉 ln (
𝑇2

𝑇1
) + 𝑅 ln (

𝑉2

𝑉1
)) 

 

Prove that these expressions hold for a single change where both T, V and P are changing 

starting from the definition of ∆𝑆: ∆𝑆 = ∫
𝑑𝑄𝑟𝑒𝑣

𝑇
 

 

 

Solution 

 

𝑆 is a state function. Therefore, ∆𝑆 only depends on the initial and final state not on the 

path taken. Therefore, even if T, P and V are changing at once, we can choose a virtual 

path for which it is easier to calculate ∆𝑆: 

 

 
 

Let’s start with the constant P path: 

 

∆𝑆 = ∫
𝑑𝑄𝑟𝑒𝑣

𝑇
 

 

𝑑𝑈 = 𝑑𝑄𝑟𝑒𝑣 + 𝑑𝑊𝑟𝑒𝑣 = 𝑛𝐶𝑉𝑑𝑇   (for an ideal gas) 

P1 T1 V1 P2 T2 V2 
Real path 

P1 T2 V? 
Constant P path 
to T2 

Constant T path to P2 

P? T2 V1 
Constant V path 
to T2 

Constant T path to V2 



 

 

𝑑𝑊𝑟𝑒𝑣 = −𝑃𝑑𝑉  We add a negative sign because for a positive dV, the system “loses” 

work 

𝑑𝑊𝑟𝑒𝑣 = −𝑃1𝑑𝑉 = −𝑃1𝑑 (
𝑛𝑅𝑇

𝑃1
) = −𝑛𝑅𝑑𝑇  (the last step is only “allowed” at cst P) 

 

𝑑𝑄𝑟𝑒𝑣 = 𝑑𝑈 − 𝑑𝑊𝑟𝑒𝑣 = 𝑛𝐶𝑉𝑑𝑇 + 𝑛𝑅𝑑𝑇 = 𝑛𝐶𝑃𝑑𝑇 

 

∆𝑆 = ∫
𝑑𝑄𝑟𝑒𝑣

𝑇
= ∫

𝑛𝐶𝑃𝑑𝑇

𝑇
= 𝑛𝐶𝑃 ln (

𝑇2

𝑇1
) 

Note that because we are at constant P, we can also write: ∆𝑆 = 𝑛𝐶𝑃 ln (
𝑉2

𝑉1
) 

 

Now, we do a constant T change: 

 

 

𝑑𝑈 = 𝑛𝐶𝑉𝑑𝑇 = 0 → 𝑑𝑄𝑟𝑒𝑣 = −𝑑𝑊𝑟𝑒𝑣 = 𝑝𝑑𝑉 =
𝑛𝑅𝑇

𝑉
𝑑𝑉 

 

Again, above we have: 𝑑𝑊𝑟𝑒𝑣 = −𝑃𝑑𝑉 

 

 

∆𝑆 = ∫
𝑑𝑄𝑟𝑒𝑣

𝑇
= ∫

𝑃𝑑𝑉

𝑇
= 𝑛𝑅 ∫

𝑝𝑑(𝑇2/𝑃)

𝑇2
= 𝑛𝑅 ∫ −

𝑃𝑑𝑃

𝑃2
= −𝑛𝑅 ln (

𝑃2

𝑃1
) 

 

Therefore: ∆𝑆𝑡𝑜𝑡 = 𝑛𝐶𝑃 ln (
𝑇2

𝑇1
) − 𝑛𝑅 ln (

𝑃2

𝑃1
) 

 

Now, let’s take the other path (constant V first): 
 

 

𝑑𝑄𝑟𝑒𝑣 = 𝑑𝑈 − 𝑑𝑊𝑟𝑒𝑣 = 𝑛𝐶𝑉𝑑𝑇 + 𝑃𝑑𝑉 = 𝑛𝐶𝑉𝑑𝑇 

 

∆𝑆 = ∫
𝑑𝑄𝑟𝑒𝑣

𝑇
= ∫

𝑛𝐶𝑉𝑑𝑇

𝑇
= 𝑛𝐶𝑉 ln (

𝑇2

𝑇1
) 

 

The second step is the same as before (Cst T): 

𝑑𝑄𝑟𝑒𝑣 = −𝑑𝑊𝑟𝑒𝑣 = 𝑃𝑑𝑉 =
𝑛𝑅𝑇

𝑉
𝑑𝑉 

 

∆𝑆 = ∫
𝑑𝑄𝑟𝑒𝑣

𝑇
= ∫

𝑝𝑑𝑉

𝑇
= 𝑛𝑅 ∫

𝑇2𝑑𝑉

𝑉 𝑇2
= 𝑛𝑅 ln (

𝑉2

𝑉1
) 

 

Therefore, we find the alternate expression: 

 

∆𝑆𝑡𝑜𝑡 = 𝑛𝐶𝑉 ln (
𝑇2

𝑇1
) + 𝑛𝑅 ln (

𝑉2

𝑉1
) 



Problem 2 

 

A community (average T=27°C) has an enormous underground reservoir of high-pressure 

(inert) gas. The reservoir has the following properties: 

 

T= 237 °C 

P = 9.95 atm 

V= 106 m3 

Depth = 2000 m below the surface 

Cp = 36 J/(mol K) 

Mw= 0.03 kg/mol 

 

Assume that the gas is ideal. 

 

What is the maximum amount of work that the community could extract out of the gas? 

 

 

Solution: 

 

For a batch system: 

 

𝑊𝐸𝑥,1→0 = − (𝑈0 − (𝑈 + 𝐸𝑝 + 𝐸𝑘)
1

) + 𝑇0(𝑆0 − 𝑆1) − 𝑝0(𝑉0 − 𝑉1) 

 

We can ignore 𝐸𝑘 but not 𝐸𝑝! And we know what ∆𝑈 is for an ideal gas: 

𝑊𝐸𝑥,1→0 = ∆𝑈 + 𝐸𝑝 + 𝑇0∆𝑆 − 𝑝0(𝑉0 − 𝑉1) = 𝑛𝐶𝑉∆𝑇 + 𝐸𝑝 + 𝑇0∆𝑆 − 𝑝0(𝑉0 − 𝑉1) 

 

For an ideal gas: 𝐶𝑉 = 𝐶𝑃 − 𝑅 = 36 − 8.314 = 27.69 𝐽/(𝑚𝑜𝑙 𝐾) 

 

∆𝑆 for an ideal gas when both T and P are changing: 

 

∆𝑆 = 𝑛 (𝐶𝑝 ln (
𝑇0

𝑇1
) − 𝑅 ln (

𝑃0

𝑃1
)) 

 

𝑚 = 𝑛 𝑀𝑤 =
𝑃𝑉

𝑅𝑇
𝑀𝑤 = 9.95 ∗ 101325

106

8.314  510 
 0.03 = 7.13 106𝑘𝑔 

 

∆𝑆 =
7.13 106

0.03
(36 ln (

300

510
) − 𝑅 ln (

1

9.95
)) = −1.42 105𝐽/𝐾   

 

 

𝐸𝑝 = 𝑚𝑔∆𝑧 = 7.13 106 ∗ 9.8 (−2000) = −1.40 1011 𝐽 

 

∆𝑈 = 𝑛𝐶𝑣∆𝑇 =
7.13 106

0.03
 27.69 ∗ 210 = 1. 38 1012 𝐽  

 



𝑊𝐸𝑥,1→0 = 1. 38 1012 𝐽 − 1.40 1011 𝐽 − 300𝐾 ∗ 1.42
105𝐽

𝐾
− 101325 (106 ∗

9.95

1

300

510
−

106) = 7.5311 𝐽   



Problem 3 

 

When you heat your house with fuel oil (“mazout”) you produce gases in a continuous 

process in the burner that are around 1400 °C (1673 K). These gases are ultimately 

cooled to around 100°C in order to heat a home at a temperature that is generally constant 

at around 20°C (and no work is produced in the process). This is not efficient because a 

tremendous amount of work/exergy is wasted by not exploiting this temperature 

difference. Can you calculate the maximum amount of work that is lost as a fraction of 

the heat used to heat the house? 

 

The gases can be considered ideal and they are always at a pressure of 1 atm (101’325 

Pa). 

 

The Cp can be assumed to be independent of temperature and equal to: 

 

Cp= 30 J/(mol K) (assumed to be constant with T°) 

 

 

Solution: 

 

We calculate the exergy of the gas going from 1400°C to 100°C 

 

𝑊𝑒𝑥,1→2 = −(𝐻2 − 𝐻1) + 𝑇0(𝑆2 − 𝑆1) 

 

With a constant Cp: 

 

∆𝐻 = 𝐶𝑝∆𝑇 = −30 ∗ 1300 = −39′000 𝐽 

 

For a constant P path: 

𝑑𝑄𝑟𝑒𝑣 = 𝑑𝑈 − 𝑑𝑊𝑟𝑒𝑣 = 𝑛𝐶𝑉𝑑𝑇 + 𝑛𝑅𝑑𝑇 = 𝑛𝐶𝑃𝑑𝑇 

 

∆𝑆 = ∫
𝑑𝑄𝑟𝑒𝑣

𝑇
= ∫

𝑛𝐶𝑃𝑑𝑇

𝑇
= 𝑛𝐶𝑃 ln (

𝑇2

𝑇1
) 

 

= 30 ∗ ln (
373

1673
) =  −45 𝐽/𝐾 

 

 

𝑊𝑒𝑥,1→2 = 39′000 − 293 ∗ 45 = 25′815 J 

 

 

𝑊𝑙𝑜𝑠𝑡 = 𝑊𝑒𝑥,1→2 − 𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = 𝑊𝑒𝑥,1→2 = 25′815 J 

 

Fraction of work lost for the heat produced: 
𝑊𝑙𝑜𝑠𝑡

∆𝐻
= 66% 

  



Problem 4 

 

Can you plot the efficiencies of the Otto, Diesel and Brayton cycles as a function of 

compression ratios? For the Diesel cycle, also consider different expansion ratios. Based 

on this can you rate the different engines if they were to use the same compression ratio? 

 

Solution : 

 

We use the following formulas for efficiencies for each of the cycles examined:  

 

Otto’s cycle efficiency: 

 

𝜂 = 1 − 𝑟𝐶
1−𝑘 

 

Diesel cycle efficiency:  

𝜂 = 1 −
1

𝑘

(
1
𝑟𝑒

)
𝑘

− (
1
𝑟𝑐

)
𝑘

1
𝑟𝑒

−
1
𝑟𝑐

 

 

where re is the expansion ratio of the Diesel engine. 

 

Efficiency of the Bryton cycle is given by equation (1.64) from the notes:  

𝜂 = 1 − (
𝑃𝐴

𝑃𝐵
)

𝑘−1
𝑘

 

 

 

With 
𝑃𝐵

𝑃𝐴
= 𝑟𝑐 it becomes  

𝜂 = 1 − (
𝑃𝐴

𝑃𝐵
)

𝑘−1
𝑘

= 1 − (
1

𝑟𝑐
)

𝑘−1
𝑘

= 1 − 𝑟𝑐
−

𝑘−1
𝑘  

 

 

  



On the figure bellow we have plotted efficiencies of different engines while varying the 

compression ratio.  

 

 
 

The Otto’s cycle is theoretically the most efficient cycle for all the compression ratios 

examined (6-25). However, we cannot compress gasoline above rc~9 (with very high-

octane fuel) due to its self-ignition. Therefore, the other two cycles (Brayton and Diesel) 

can effectively reach higher efficiencies. In addition, Diesel engines feature one more 

variable with is the expansion ratio (re). The more we are able to expand, the higher the 

efficiencies will be.  Further, we notice that the Brayton’s cycle efficiency varies the most 

with compression ratios. With lower compression ratios (<10) it is by far the least efficient 

solution, whereas when reaching high compression (>20) it becomes comparable or 

superior to Diesel engine efficiency (depending on how much we expand in the Diesel 

cycle).  

 

 


